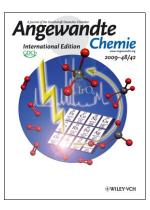


Although +VI ...


... has long been the highest experimentally known oxidation state of Ir, the +VIII oxidation state has been produced and identified in low-temperature noble gas matrices of iridium tetroxide. M. F. Zhou, S. Riedel, and co-workers describe in their Communication on page 7879 ff. how the compound is formed by co-depositing Ir atoms with mixtures of O_2 and a noble gas onto a CsI surface at 4–6 K. Theoretical analysis indicates that it is a d^1 species with the formal oxidation state Ir^{VIII} .

Inside Cover

Yu Gong, Mingfei Zhou,* Martin Kaupp, and Sebastian Riedel*

Although +VI has long been the highest experimentally known oxidation state of Ir, the +VIII oxidation state has been produced and identified in low-temperature noble gas matrices of iridium tetroxide. M. F. Zhou, S. Riedel, and co-workers describe in their Communication on page 7879 ff. how the compound is formed by co-depositing Ir atoms with mixtures of O_2 and a noble gas onto a CsI surface at 4–6 K. Theoretical analysis indicates that it is a d^1 species with the formal oxidation state Ir^{VIII}.

